

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2017-2018

MATERIA: QUÍMICA

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder a las preguntas de la opción elegida.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

OPCIÓN A

Pregunta A1.- Un elemento químico posee una configuración electrónica 1s²2s²2p⁶3s²3p⁶4s²3d⁶. Justifique si son verdaderas o falsas las siguientes afirmaciones:

- a) Pertenece al grupo 17 del Sistema Periódico.
- b) Se encuentra situado en el tercer periodo.
- c) Conduce la electricidad en estado sólido.
- d) Los números cuánticos (3,1,-2,+½) corresponden a un electrón de este elemento.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta A2.- Responda a las siguientes cuestiones:

- a) Escriba los equilibrios de disociación en agua de HNO₂, NH₃ y HSO₄⁻ e indique si actúan como ácido o como base.
- b) Se dispone de una disolución de ácido acético 0,2 M y otra de igual concentración de ácido salicílico. Justifique cuál de las dos tiene menor pH.
- c) Calcule el pH de una disolución de amoniaco 0,45 M.

Datos. K_a (HNO₂) = 5,6×10⁻⁴; K_a (HSO₄⁻) = 1,0×10⁻²; K_a (ácido acético) = 1,8×10⁻⁵; K_a (ácido salicílico) = 1,1×10⁻³; K_b (amoniaco) = 1,8×10⁻⁵.

Puntuación máxima por apartado: 0,75 puntos apartados a) y c); 0,5 puntos apartado b).

Pregunta A3.- Responda a las siguientes cuestiones:

- a) Escriba dos isómeros de función con la fórmula C₃H₆O y nómbrelos.
- b) Formule la reacción, indique de qué tipo es, nombre la regla que se sigue para la obtención del producto mayoritario y nombre el reactivo y el producto: CH₃-CHOH-CH₂-CH₃ + H₂SO₄/calor →
- c) Nombre y escriba la fórmula del producto de la reacción de CH₃-CH₂-CH₂-CHO con un reductor.

Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

Pregunta A4.- A 25°C se produce la reacción $AB_3(g) \leftrightarrows AB_2(g) + 1/2 B_2(g)$, cuando se alcanza el equilibrio $AB_3(g)$ está disociado al 65% con una presión total de 0,25 atm. Calcule:

- a) Las presiones parciales de cada gas en el equilibrio.
- b) K_p y K_c.

Dato. R = $0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.

Puntuación máxima por apartado: 1 punto.

Pregunta A5.- A partir de los potenciales de reducción que se adjuntan, conteste razonadamente:

- a) ¿Qué metales de la lista se disolverán en una disolución de HCl 1 M?
- b) Se dispone de tres recipientes con disoluciones de nitrato de plata, nitrato de cinc y nitrato de manganeso (II). En cada uno se introduce una barra de hierro ¿en qué caso se formará una capa del otro metal sobre la barra de hierro?

Datos. $E^{0}(V)$: $Fe^{2+}/Fe = -0.44$; $Zn^{2+}/Zn = -0.76$; $Ag^{+}/Ag = 0.80$; $Cu^{2+}/Cu = 0.34$; $Na^{+}/Na = -2.71$; $Mn^{2+}/Mn = -1.18$.

Puntuación máxima por apartado: 1 punto.

OPCIÓN B

Pregunta B1.- Considere los elementos Mg y Cl:

- a) Escriba la configuración electrónica de Mg²⁺ y Cl⁻.
- b) Indique los números cuánticos del electrón más externo del Mg.
- c) Ordene los elementos por orden creciente de tamaño y justifique la respuesta.
- d) Ordene los elementos por orden creciente de primera energía de ionización y justifique la respuesta.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta B2.- La reacción 3 A(g) + B(g) \rightarrow 2 C(g) + D(g) es de orden 1 respecto de A y de orden 2 respecto de B.

- a) Escriba la velocidad de la reacción en función de cada especie y justifique si la velocidad de desaparición de B es doble de la velocidad de desaparición de A.
- b) Obtenga las unidades de la constante de velocidad.
- c) Razone si la reacción directa es endotérmica sabiendo que la energía de activación es 35 kJ y la de la reacción inversa es 62 kJ.
- d) Explique cómo afecta a la velocidad de reacción un aumento de volumen a temperatura constante.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta B3.- En una celda electrolítica se introduce cloruro de sodio fundido, obteniéndose cloro molecular y sodio metálico.

- a) Escriba las reacciones que se producen en el ánodo y en el cátodo de la celda electrolítica.
- b) Calcule el potencial necesario para que se produzca la electrolisis.
- c) Calcule el tiempo requerido para que se desprenda 1 mol de Cl_2 si se emplea una intensidad de 10 A. Datos. E^0 (V): $Cl_2/Cl^- = 1,36$; $Na^+/Na = -2,71$; F = 96485 C.

Puntuación máxima por apartado: 0,75 puntos apartados a) y c); 0,5 puntos apartado b).

Pregunta B4.- Se dispone de H₂SO₄ comercial de 96,4% de riqueza en masa y densidad 1,84 g⋅mL⁻¹. Calcule:

- a) El volumen de ácido comercial que se necesita para preparar 200 mL de disolución 0,5 M.
- b) El pH de la disolución resultante de mezclar 25 mL de disolución 0,1 M de H₂SO₄ con 50 mL de disolución 0,5 M de NaOH. Suponga los volúmenes aditivos.

Datos. Masas atómicas: H = 1; O = 16; S = 32.

Puntuación máxima por apartado: 1 punto.

Pregunta B5.- Responda a las siguientes cuestiones

- a) Nombre los siguientes compuestos: CH₂OH-CH₂-CH=CH-CH₃ y CH₃-CO-CH₂-CO-CH₃.
- c) Formule y nombre el monómero que ha dado lugar al siguiente polímero: $-(CH_2-CH_2)_n-$. Nombre el tipo de reacción.

Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c).

QUÍMICA

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

Cada una de las preguntas se podrá calificar con un máximo de 2 puntos.

Si se han contestado preguntas de más de una opción, únicamente deberán corregirse las de la opción a la que corresponda la pregunta resuelta en primer lugar.

Se tendrá en cuenta en la calificación de la prueba:

- 1.- Claridad de comprensión y exposición de conceptos.
- 2.- Uso correcto de formulación, nomenclatura y lenguaje químico.
- 3.- Capacidad de análisis y relación.
- 4.- Desarrollo de la resolución de forma coherente y uso correcto de unidades.
- 5.- Aplicación y exposición correcta de conceptos en el planteamiento de las preguntas.

Distribución de puntuaciones máximas para este ejercicio

OPCIÓN A

Pregunta A1.- 0,5 puntos por apartado.

Pregunta A2.- 0,75 puntos apartados a) y c); 0,5 puntos apartado b).

Pregunta A3.- 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

Pregunta A4.- 1 punto por apartado.

Pregunta A5.- 1 punto por apartado.

OPCIÓN B

Pregunta B1.- 0,5 puntos por apartado.

Pregunta B2.- 0,5 puntos por apartado.

Pregunta B3.- 0,75 puntos apartados a) y c); 0,5 puntos apartado b).

Pregunta B4.- 1 punto por apartado.

Pregunta B5.- 0,5 puntos apartado a); 0,75 puntos apartados b) y c).