UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS
OFICIALES DE GRADO
Curso 2012-2013

MATERIA: QUÍMICA

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

La prueba consta de dos opciones, A y B, y <u>el alumno deberá escoger una de las opciones y resolver las cinco preguntas planteadas en ella,</u> sin que pueda elegir preguntas de diferentes opciones. Cada pregunta puntuará sobre un máximo de dos puntos. <u>No se contestará ninguna pregunta en este impreso.</u>

TIEMPO: una hora y treinta minutos.

OPCIÓN A

Pregunta A1.- Se tienen los elementos de números atómicos 12, 17 y 18. Indique razonadamente:

- a) La configuración electrónica de cada uno de ellos.
- b) Los números cuánticos del último electrón de cada uno de ellos.
- c) ¿Qué ion es el más estable para cada uno de ellos? ¿Por qué?
- d) Escriba los elementos del enunciado en orden creciente de primer potencial de ionización, justificando su respuesta.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta A2.- Indique el carácter ácido—base de las siguientes disoluciones, escribiendo su reacción de disociación en medio acuoso:

- a) Ácido hipocloroso.
- b) Cloruro de litio.
- c) Hidróxido de sodio.
- d) Nitrito de magnesio.

Datos: K_a (ácido hipocloroso) = 3×10^{-8} ; K_a (ácido nitroso) = 4×10^{-4}

Puntuación máxima por apartado: 0,5 puntos.

Pregunta A3.- Para cada uno de los siguientes procesos, formule la reacción, indique el nombre de los productos y el tipo de reacción orgánica:

- a) Hidrogenación catalítica de 3-metil-1-buteno.
- b) Deshidratación de 1-butanol con ácido sulfúrico.
- c) Deshidrohalogenación de 2-bromo-2-metilpropano.
- d) Reacción de propanal con KMnO₄.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta A4.- Se introduce fosgeno (COCl₂) en un recipiente vacío de 1 L a una presión de 0,92 atm y temperatura de 500 K, produciéndose su descomposición según la ecuación: COCl₂ (g) \leftrightarrows CO (g) + Cl₂ (g). Sabiendo que en estas condiciones el valor de K_c es $4,63\times10^{-3}$; calcule:

- a) La concentración inicial de fosgeno.
- b) Las concentraciones de todas las especies en el equilibrio.
- c) La presión parcial de cada uno de los componentes en el equilibrio.

Dato. $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c).

Pregunta A5.- El ácido clorhídrico concentrado reacciona con el dióxido de manganeso produciendo cloro molecular, dicloruro de manganeso y agua.

- a) Ajuste las semirreacciones iónicas y la reacción molecular global que tienen lugar.
- b) Calcule el volumen de ácido clorhídrico, del 35% en masa y densidad 1,17 g·cm⁻³, necesario para hacer reaccionar completamente 0,5 g de dióxido de manganeso.

Datos. Masas atómicas: H = 1,0; O = 16,0; Cl = 35,5 y Mn = 55,0.

Puntuación máxima por apartado: 1 punto

OPCIÓN B

Pregunta B1.- Justifique si son verdaderas o falsas las siguientes afirmaciones:

- a) Una molécula que contenga enlaces polares necesariamente es polar.
- b) Un orbital híbrido s²p² se obtiene por combinación de dos orbitales s y dos orbitales p.
- c) Los compuestos iónicos en disolución acuosa son conductores de la electricidad.
- d) La temperatura de ebullición del HCl es superior a la del HF.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta B2.- Se tiene una reacción en equilibrio del tipo: aA(g) + bB(g) = cC(l) + dD(s).

- a) Escriba la expresión de K_p.
- b) Justifique cómo se modifica el equilibrio cuando se duplica el volumen del recipiente.
- c) Justifique cómo se modifica el equilibrio si se aumenta la presión parcial de la sustancia A.
- d) Justifique qué le ocurre al valor de K_p si aumenta la temperatura del sistema.

Puntuación máxima por apartado: 0,5 puntos.

Pregunta B3.- Para llevar a cabo los procesos indicados en los apartados a) y b) se dispone de cloro y iodo moleculares. Explique cuál de estas dos sustancias se podría utilizar en cada caso, qué semirreacciones tendrían lugar, la reacción global y cuál sería el potencial de las reacciones para:

- a) Obtener Ag⁺ a partir de Ag.
- b) Obtener Br₂ a partir de Br⁻.

Datos.
$$E^{0}$$
 (Cl_{2}/Cl^{-}) = 1,36 V; E^{0} (Br_{2}/Br^{-}) = 1,06 V; E^{0} (I_{2}/I^{-}) = 0,53 V; E^{0} (Ag^{+}/Ag) = 0,80 V.

Puntuación máxima por apartado: 1 punto.

Pregunta B4.- Sabiendo que, en condiciones estándar, al quemar 2,5 g de etanol se desprenden 75 kJ y al hacer lo mismo con 1,5 g de ácido acético se obtienen 21 kJ, calcule para el proceso:

$$CH_3-CH_2OH(1) + O_2(g) \rightarrow CH_3-COOH(1) + H_2O(1)$$

- a) Los calores de combustión molares de etanol y ácido acético.
- b) El valor de ΔH^o de la reacción del enunciado.
- c) El valor de ΔU° de la reacción del enunciado.

Datos.
$$R = 8,31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$$
. Masas atómicas: $H = 1$, $C = 12$ y $O = 16$.

Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

Pregunta B5.- Se determina el contenido de ácido acetilsalicílico (C₈H₇O₂–COOH) en una aspirina (650 mg) mediante una valoración con NaOH 0,2 M.

- a) Calcule la masa de NaOH que debe pesarse para preparar 250 mL de disolución.
- b) Escriba la reacción de neutralización.
- c) Si se requieren 12,5 mL de disolución de NaOH para alcanzar el punto de equivalencia, determine el porcentaje en masa de ácido acetilsalicílico en la aspirina.
- d) Determine el pH cuando se disuelve una aspirina en 250 mL de agua.

Datos. K_a (ácido acetilsalicílico) = 2,64×10⁻⁵. Masas atómicas: H = 1; C = 12; O = 16 y Na = 23.

Puntuación máxima por apartado: 0,5 puntos.